
ABSTRACT
Program comprehension is one of the most difficult parts in
computer science. At the latest, the turn of the year 1999 has
shown that program comprehension and tool supported
reverse engineering attained more and more attention.
Design patterns, especially the famous gamma-patterns
[GHJV95], support the forward-engineering process of
software development. Since the gamma-patterns are an
analysis product of various software systems, they are a
result of a reverse engineering process. Our idea is to recover
design patterns from source code to support a
comprehension process. Therefore, we introduce a flexible
definition of patterns consisting sub-patterns. We allow that
patterns inherit from other patterns and we use the
polymorphism concept to at least reduce the number of
pattern definitions. We propose to use inheritance for design
variants and fuzzy logic for implementation variants of a
pattern. We discuss advantages and disadvantages of the two
definition possibilities and present an execution mechanism
to recover patterns in source code.
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1 INTRODUCTION
Computer science has survived the largest software update
problem since its birth, namely the year two thousand (y2k)
problem. Several billion lines of code were investigated in
order to ensure the correct functionality of the systems. But
even experts were afraid of the turn of the year 1999 because
they did not know exactly if their solutions work in all cases.
However, the y2k problem was mainly a product of a casual
chain of human made decisions over decades of developing
and enhancing a system. Decisions made during the
development depend on various reasons. For example
limited system resources, or a contract with a hard-deadline,
or there are currently no developers available. In addition,
developers have certain personal programming styles, e.g.

using inexpressive variable names or spreading an algorithm
into several pieces, which makes the comprehension of the
software for other developers difficult.

Especially software engineering principles like
documentation, before hand design, and derived tests take a
back seat vis-á-vis to be the first on the market or to produce
solutions, quickly. Enhancement of those systems gains to
the most difficult parts of software development particularly
if the core developers left the company. In those cases first,
reverse engineering techniques are applied to get an abstract
representation and overview of the system. In most cases the
reverse engineering is done by hand, because the
enhancement comprises of only some modifications, because
a complete reverse engineering task is too expensive. This
leads eventually to patchworks or hot-fixes and is more an
aggravation than an improvement.

To overcome these problems computer science has
developed various approaches of reverse engineering
processes [Jah99, Wil94] and automated tools to support
those processes, e.g. clustering techniques. Typically, the
techniques stop at a certain degree of granularity where the
reengineer has to perform the more detailed analysis by
hand, cf. [CFM93]. Other approaches try to identify the
behaviour of certain program parts, but fail for large systems.
In general, this results from the high number of syntactical
different but semantically equal implementations.

In our previous work we have presented reverse-engineering
approaches for the analysis of java card applications
[JNW00] and to support round-trip engineering [NWZ01].
Both approaches are very similar and we spotted, that they
fits for other purposes too, since both approaches are very
technical and domain specific, in this paper we present a
generalized technique. We introduce a common notation,
and a new target-driven inference mechanism. We will
present the technique on the example of recovering design
patterns [GHJV95] from Java source code1.

The rest of the paper is structured as follows: In section 2 we
give a short introduction to design patterns, especially their
definition for reverse engineering needs using the UML.
Section 3 describes our approach to recover design variants

1. Our approach is not limited to Java, other object-oriented lan-
guages are also imaginable, e.g. C++ or Eiffel.
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of certain design patterns. We use fuzzyness for the recovery
of implementation variants, which is introduced in section 4.
The execution mechanism of our pattern recognition system
and the interaction with the reengineer is described in the
following section 5. Subsequently, we discuss related work
and close the paper with some conclusions and future work.

2 RECOVERING DESIGN PATTERN
The design patterns presented in [GHJV95] are an analysis
result of diverse software systems developed in the
laboratories of Big Blue. In the following, we call those
patterns gamma-patterns. However, the intend of the gamma-
patterns is to provide a collection of ‘good’ design principles
and discuss their advantages and disadvantages as well as
their relation to other patterns. For each pattern a sample
implementation in the C++ language is given.

Although gamma-patterns are a product of a reverse-
engineering process, they are applied in forward-engineering
tasks. For example to develop new software or for its
documentation. To support such forward engineering,
programming languages have been extended by new
language constructs [CILS93, BFLS99, KS98]. For example
[BFLS99] extends Eiffel [Mey88] with a new ‘pattern’
language construct and describes its compilation.

A future trend is to provide so-called pattern-languages,
where each language is a collection of patterns like the
gamma-patterns for a certain domain or application problem,
e.g. concurrency control [CKV96]. Since each language
deals with a certain problem in a specific domain, the
discussion of advantages and disadvantages is mainly
problem driven and particularly based on a special
application.

Design patterns are also used to document certain parts of a
design. Many techniques have been developed to
automatically derive a documentation out of a given design
(forward engineering). Other approaches analyse the source
code and try to get an automatic generated documentation
out of it (reverse Engineering), cf. [SS00]. Those approaches
mainly focus on method-bodies and parts of method-bodies
in order to document them. In this case design patterns are
very helpful, because they comprise information about
classes, methods, attributes, and their relation among each
other. So, our aim is to recover design patterns and annotate
all design parts, which are comprised by the pattern.
Consequently, the annotated design can then be used for
various purposes, e.g. automatic documentation or redesign.

The Unified Modelling Language (UML) [UML] provides a
pattern construct, but it has no defined semantics. It allows
only to annotate a current design, mainly class diagrams for
documentation and readability reasons. For example, one of
the famous gamma-patterns is the composite pattern. Figure
1 shows the structural part of the composite pattern. A
gamma-pattern description consists of 12 additional parts,
e.g. the pattern’s name, its intention, the structure, the
behaviour, etc. The composite pattern in figure 1 is already
adapted and contains more information as the original
structure, i.e. the dashed classLeaf and its inheritance
relation1. This means, that for a composite pattern an explicit

leaf class is not needed. We took this information out of the
collaboration description of the leaf: “If the recipient is a
Leaf, then the request is handled directly.”. This does not
force tan explicit Leaf class inheriting fromComponent, but
could also be handled by a subclass ofComposite. For
example, such a design is practised in the Java Swing API
[ELW98, HC98a, HC98b].

Applying design-patterns (gamma-patterns) for reserve-
engineering leads to several problems, which have to be
solved. First, design patterns have to be formal defined, in
order to automate their detection, because the informal
described parts of the gamma-patterns are not feasible for
tool supported (semi-)automatic recovery. Second, most
implementation variants of a pattern have to be covered by
the definition. And third, the execution mechanism must be
efficient in an appropriate time scale.

In addition to implementation variants of one design pattern,
there also exist different design variants of one pattern, e.g.
figure 5 shows two design variants of the composite pattern.
Considering legacy systems, those variants become
especially important, because they contain typically no pure
gamma-pattern but use some derivations.

Our Approach
Our recovering technique for design patterns is based on the
annotation of an abstract syntax graph (ASG). Therefore we
have to parse the source code. Whereas, our abstract syntax
graph model is more or less a simplification of the original
UML meta model [UML] for performance reasons. In case
of Java source code we use the JavaCC (Java Compiler
Compiler) [JCC] to generate a parser out of the given
grammar, where the back-end of the parser creates directly
an ASG.

Basically, the parser generates a rudimentary UML class
diagram containing classes with attributes and method
declarations as well as inheritances between the classes.
Note, so far the class diagram does not contain any
associations or other dependencies, cf. [NNWZ00]. Method
bodies itself are parsed as activity diagram [KNNZ99a]. For
more details about our integrated meta model see
[KNNZ00].

1. We took the notation from the graph grammar field, where op-
tional nodes and edges are specify by dashed lines [Zün96].
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As mentioned before, our approach bases on the annotation
of the syntax graph. Our technique is similar to language and
graph parsing techniques, cf. [RS95]. However, the
annotated parts (nodes in the syntax graph) are not
consumed. Thus, nodes may be members of various
annotations (patterns).

Pattern definition
The pattern definition in [GHJV95] consists of more
informal parts than formal ones. The most formal one is the
structure part of a pattern’s definition, because it is typically
a class diagram. But, for example, the intention of the pattern
is part of its definition, written in prose. And even the
collaboration part is mostly informal. But for tool supported
reverse-engineering, a formal definition is indispensable. For
example, Krämer and Prechelt show in [KP96], that it is not
sufficient to analyse the structure only, because this leads to
minor positive results only and to many false-positives.

Therefore, in a first step we have specified most of the
gamma-patterns using the Fujaba1 environment [FNTZ98,
KNNZ99b]. Fujaba supports our integrated abstract syntax
model and allows to generate executable Java code out of a
given specification. In case of the gamma patterns, we used
class diagrams for the specification of the structure. For the
behaviour we used story-diagrams, namely a combination of
activity-diagrams and collaboration diagrams, to specify the
pattern’s behaviour. On the one hand the benefit is a
precisely defined pattern (structure as well as behaviour),
which could be looked-up in source code, automatically. On
the other hand, we lose the pattern’s flexible usage because
we fixed exactly one implementation.

To overcome this inflexibility , we reorganized the patterns
and allow to separate common parts of patterns into an own

1. The Fujaba (From UML to Java And Back Again) environment
is developed by the AG Softwaretechnik at the University of Pa-
derborn (www.fujaba.de).

definition. The main difference is, that patterns are
constructed out of sub-patterns. Figure 2 shows our
definition of the composite pattern taken from [GHJV95].
Since we want to recover patterns, for its definition we use
an object diagram at the ASG level. In comparison to figure
1 we left out theLeaf class, because its existence is not
necessary, s.o. This definition allows us to concentrate and
recover the essential parts of a composite pattern.

The composite definition consists of three kinds of ‘objects’,
i.e. some with oval shape, some original UML objects, and
some equal boxes. Oval shaped objects represent other
patterns whereas the original rectangle shaped objects
represent nodes in the abstract syntax graph. The equal
boxes are just an abbreviation of any kind of object, either
annotations as well as ASG nodes. Each object must be an
instance of a certain class in the domain model, cf. figure 3,
and each link between two objects must be an instance of an
association in the domain model. The object’s type and the
link names in the object diagram must be the same as the
corresponding class and association names. The (grey)
object :Composite marked with «create» indicates, that a
new annotation is created, if the black part in the underlying
syntax graph is found2. This includes the (grey) links from
the annotation object to the other objects, too.

The domain model in figure 3, represented as a class
diagram, gives an overview of the employed pattern parts
and ASG nodes and their relation to each other. Classes
representing pattern annotations are marked with a new
stereotype «Pattern», which is shown as a specific icon
above the class names. Associations are bidirectional, but
consist of a defined read direction, which indicates for
example that theComposite pattern annotates anAssociation

2. This semantics is similar to graph rewrite rules, cf. [Roz97,
Zün96]

 Figure 2: Composite pattern (object structure)
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and Generalization as well as two UMLClass nodes of the
ASG. The default cardinality is exactly one in the read
direction and 0..1 in the reverse direction.

In general, common parts in patterns are defined by their
own pattern definition. For example, associations and
delegations (method calls are delegated to an associated
class) exist in many design patterns. Figure 4 shows the

generalization pattern definition, which is a straight forward
definition, because there already exists an ASG node
UMLGeneralization that represents an inheritance relation
between two classes.

3 DESIGN VARIANTS
Program comprehension techniques are typically applied for
legacy systems in order to get an abstract representation of
the software. Design patterns, especially gamma-patterns are
one opportunity, but mostly legacy systems do not contain
pure original patterns. We analysed some Java programs and
libraries, for example the swing library [ELW98], and
Fujaba itself [FNTZ98] and found some derivations of the
composite pattern, which are shown in figure 5.

On the left hand side, there exists no explicit component
class, but a direct aggregation at the composite class itself.
This allows each node in the tree to have children. Typically
the Leaf class overwrites the access methods for the
container or do not access the container in one of its own
methods. On the right hand side, the inheritance relation is
extended by inserting another classClassA, which inherits
from Component andComposite inherits fromClassA. This
design variant allows two different leaf variants, which have
common properties.

Such design variants of one pattern result typically in a
definition for each variant, in our case two new composite

definitions. As an example we allow the definition of
patterns consisting of sub-patterns. To facilitate such
definitions it is sufficient to define a new annotation called
MultiLevelInherit, which annotates the super- and subclass of
two connectedGeneralizations. Figure 6 shows the definition
of the multi-level-inheritance pattern.

The multi-level-inheritance pattern is structural, namely the
annotation structure, equivalent to a simple generalization
pattern. Therefore, in the domain model, cf. figure 3, the
multi-level-inheritance pattern is a ‘subclass’ of the
generalization pattern. Consequently, the MultiLevelInherit
pattern inherits all associations fromGeneralization pattern
and is aGeneralization pattern, in the sense of object-
oriented concepts.

During the detection process, the polymorphism is used to
gain more flexibility in the process. For example, running the
detection algorithm on the right variant of the composite
pattern in figure 5, results in two (four including the leafs)
Generalization annotations. One betweenComponent and
ClassA and the second betweenClassA and Composite.
Without the multi-level-inheritance pattern no composite
pattern would be found. But, using it creates an annotation
MultiLevelInherit between Component and Composite.
Because aMultiLevelInherit annotation is aGeneralization
annotation it may serve as a match for theGeneralization
annotation required in figure 2 and a composite annotation is
created for the right example in figure 5. Note, a
MultiLevelInherit annotation may serve as a match for a
Generalization in figure 6, too. Thereby, the recursive use of
the multi-level-inheritance pattern allows to detect
composite patterns with more than one class in the
inheritance hierarchy from Component to Composite.

To recover also the left variant of the composite pattern, we
could either add another sub-pattern ofGeneralization in the
domain model or we could define a new sub-pattern of the
Composite pattern without inheritance in it. Both solutions
are feasible but the second one is better regarding the
number of annotations created, because otherwise each class
in the abstract syntax graph will have a generalization
annotation, automatically.

 Figure 4: Generalization pattern
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4 IMPLEMENT ATION VARIANTS
In addition to design variants, i.e. after handling the
multitude of design pattern variants, we have to deal with
implementation variants. For some parts of a design pattern
there exist several ways to implement them. For simple
syntactical variants, e.g. i=i+1 vs. i++, we refer to parser
techniques [ASU86, JCC] for details.

Like mentioned before, analysing only the structure is not
sufficient, cf. [KP96]. Method bodies have to be analysed,
too, in order to raise the quality of the results. There, we
discovered a multitude of implementation variants, one
example are head- vs. foot-controlled loops. The mass of
different implementation ways is not only limited to
methods. Associations can also be coded in several variants.
In fact, the recovery of method bodies and associations
induces the same problems, i.e. the handling of the
syntactical variants for the same semantics. Here we focus
on associations only, due to the lack of space.

First, we have different kinds in multiplicity of binary
associations, namely OneToOne, OneToMany, ManyToOne,
and ManyToMany. Additionally consider qualified, sorted
and n-ary associations. We presume, that associations are
bidirectional implemented, otherwise we call them
references.

Second, an association is composed of two references, which
we have to distinguish in their cardinality (0..1, 1, n, 1..n)1.
To manage this mass of annotation definitions, we have
developed a domain model analogous to figure 3. For details
see [NWZ01], where a similar approach to support round-
trip engineering is presented. This hierarchy concept
controls annotation explosion, but does not solve it entirely.
We still annotate information that may not be requested and
this leads to scalability problems.

Therefore we introduced fuzzy logic [Zad78] in our
recovering process. In many cases, we only need to recover
the information that an association exits, cf. the composite
pattern figure 2. The intentional omitting of information in
order to control annotation explosion, leads to less reliability.

For example, figure 7 shows implementation variants for
OneToOne associations. Here we annotate the source code
directly, because the ASG is very large and gives no new
insights. In variant 1, just a public reference to the associated
class is supplied, whereas variant 2 implements a private
reference and provides read/write operations. To recover the
multiplicity of the association, the method bodies have to be
analysed. This is done in the ReadOp and WriteOp with the
same principle as presented here, cf. [NWZ01].

Variant 3 differs from variant 2 by implementing only one
write operation (removing the element is done by
setClassF(null) ). All-over the common part of these three
variants is an attribute pointing to another class. The
common parts to infer an association is that two classes point
to each other. Thus the reengineer decided that such a pair of
references is sufficient to indicate an association in the class

1. The same holds for associations implemented as a separate class.

diagram with a certain degree of confidence. To handle more
than one association between two classes, again, we have to
analyse the method bodies for the explicit assignment.

Figure 8 shows the rule that describes how to find an
association. We assume, that an association between two
classes consists of one attribute in each class referencing the
other class. So, in the ASG there should be a classc1 with an
attribute a1 referencing classc2 and vice versa. There must
also be annotation objectsann2 and ann5, that represent
these references. To confirm the supposed association
between classesc1 and c2, optional nodes - indicated by
dashed lines - are added. Objectann1 annotates, that there is
a methodr1 in classc1, which reads attributea1 and returns
its value. This is ensured by theReadOp pattern, which
analyses the method’s body, appropriately. Method w1
assigns a value to attributea1. For classc2 it is the same with
methodsr2 and w2. Finally, an annotation objectann7 is
created to represent an association between classesc1 andc2
with confidence 0.6.

In general, each rule defines a so called fuzzy belief and a
threshold value between 0.0 and 1.0. They are specified in
the top left corner of the implication after the implications
name. In figure 8 the implicationi1 has a minimum fuzzy
belief of 0.6 and a threshold value of 0.5. A fuzzy belief
indicates the certainty, that a given sub-graph represents the
searched pattern.

In this example the fuzzy belief is evaluated as follows. If
only the necessary parts of the association are found, the
implication i1 has a certainty of 0.6. For each optional
annotationann1, ann3, ann4 andann6, the fuzzy belief of
the optional node is added to the overall fuzzy belief. So, if a

 Figure 7: Variants of association implementation
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11: { ... }
12: ...
13: public void removeClassA() { ... }
14: public ClassA getClassA() { ... }
15: }
16: ...
17: // Variant 3(according to Fujaba)
18: public class ClassC
19: { private ClassD clazz_d;
20: ...
21: public void setClassD (ClassD value)
22: { ... }
23: public ClassD getClassD() { ... }
24: }

RefField

WriteOp

ReadOp

ReadOp

Association

WriteOp

RefField

Association
RefField

WriteOp



6

match for all optional nodes can be found, implicationi1 will
return a certainty of 1.0. This value is saved by the created
annotation objectann7. The threshold value of implicationi1
prevents the use of annotations (e.g.ann2 and ann5) with
fuzzy beliefs lower than 0.5. Optional nodes have their own
threshold values, cf.ann1, ann3, ann4 andann6 in Figure 8.

Applying fuzzy logic lets us define a look up rule for a
pattern which is not a leaf in the look up hierarchy. Children
in the hierarchy may recover more detailed information. For
example, we employ a similar fuzzy rule to recognize a more
detailed association, e.g. a OneToMany association. Of
course, an identified OneToMany association with a certain
fuzzy belief leads to an association annotation with the same
fuzzy belief.

In addition, we provide the definition of contra indications,
which can improve the recognition process. For example, the
Java programming language does not provide user defined
datatypes. User defined datatypes must be implemented at a
certain class, which is immutable. Immutable means that all
values of an instance of the class cannot be changed after its
creation, e.g. complex numbers. The immutable property can
be defined as a pattern like associations. Such a class may be
annotated by an immutable pattern during the recognition
process. In case of UML, classes having a reference to an
immutable class are handled as a datatype displayed as an
attribute and not as an arrow to the class. This fact can be
underlined by defining a contra indication from the
immutable pattern to the association pattern. In general,
contra indications can be used where language constructs are
ambiguously used to implement different design items.
Fixing one solution, e.g. a datatype, early in the analysis, can

provide better results later on.

In summary, we overcome the flow of information with
results from the multitude of variants by a hierarchy concept
of sub-pattern and annotations. Combined with optional
parts in the rules we appraise the fuzzy values for the
certainty of our propositions.

5 INFERENCE MECHANISM
Concerning the search of patterns, Jahnke and Walenstein
state in [JW00] that “reverse engineering is an imperfect
process driven by imperfect knowledge”. They propose, that
reverse engineering tools should be used as a media for
reengineering where the reengineer gains high support for all
performed tasks and could engage in the analysis wherever
needed.

Once a pattern is defined, it has to be recovered in legacy
code. To do so, we need an inference engine. Jahnke
developed Generic Fuzzy Reasoning Nets (GFRN) for
reverse engineering of relational database applications
[Jah99, JSZ97]. These nets are described by reverse
engineering rules consisting of predicates and implications.
An inference engine expands these GFRN on the legacy
database code into Fuzzy Petri Nets (FPN) and evaluates
them. To serve the purpose of recovering design patterns and
clichés, we will adapt this inference engine. Originally,
GFRN implications are formulated by relational algebra. We
will replace the relational algebra in implications by graph
rewrite rules and introduce analysis machines for the
inference mechanism, that interpret these rules appropriately.

As mentioned before, the legacy code is parsed into an
abstract syntax graph similar to the UML meta model. The
ASG is analysed with graph rewrite rules stemming from
[FNTZ98]. They look-up and annotate sub-graphs of the
ASG. To prevent solving a sub-graph parsing problem
[Meh84], we introduced annotation objects to the ASG.
These annotation objects serve both, as starting points for
searching sub-graphs and as objects that hold information
about the found pattern, such as fuzzy beliefs and
participating objects.

A fuzzy rule (pattern) for searching a composite design
pattern is shown in figure 9. The implication infers with a
certainty of 1.0, if a match for this graph rewrite rule is
found. The predicateGeneralization in the upper left is
painted by a thick oval. Such predicates serve as starting
points of the inference process. The generalization pattern
lies on the lowest level in the hierarchy, which we can infer
directly from the ASG. Consequently, we take it as a starting
point in this example. In general, each pattern, which
consists only of abstract syntax graph nodes can serve as
starting point. If there are many possible starting patterns,
those are preferred, which are part of patterns on a high level
of the hierarchy. Also, the user can define predicates as
starting points, which are preferred during the execution. In
contrast to starting patterns, associations or delegations are
clichés with a lot of variants. A generalization is usually
denoted by a key word in the source code. It can be directly
parsed into an ASG.

Since generalization along several levels is allowed by a
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composite pattern, the structural inheritance introduced in
section 3 is provided by our enhanced GFRN. The
annotationann1 in figure 9 means bothGeneralization and
MultiLevelInherit, cf. figure 4 and 6.

The original GFRN used in an earlier approach [JNW00]
have to be changed to support these new features. First of all
the relational algebra has to be replaced by graph rewrite
rules as mentioned above. Then the inference machine has to
be adjusted. The old strategy creates basic facts out of all
axioms - predicates with no antecedent implication. This
mechanism is no longer feasible. Axioms like ReadOp or
RefField would produce too much basis facts when we
reengineer legacy code of several thousand lines of code, cf.
[Wil94].

We have developed an algorithm that differs from the
original inference mechanism of GFRN. Our new approach
for the recognition of design patterns and clichés can be
compared to a seed, that first grows up to the light and then
builds some roots to fortify its stability. Predicates, that are
preconditions to an implication, can be triggered with
additional parameters by this implication. So we are able to
mark only a few axioms as basis facts. Axioms like RefField
andReadOp can be triggered to reduce investigations to the
objects of interest. We will explain the algorithm by the
composite pattern example below.

The recognition is kicked off by an UMLGeneralization
object g in the ASG. It triggers the rule for the basis fact
Generalization and an annotation object for the two
participating classes c1 and c2 is created. Note, a
Generalization pattern lies on the lowest level of the
hierarchy. Since the rule in figure 9 declares the
Generalization as a precondition for aComposite, the
Composite is triggered. Now, the direction changes from

bottom-up to top-down, in order to manifest the result. As
specified in figure 9, to infer a composite we also need an
Association and1N_Delegation, too. These last ones may not
be detected, yet. This results from the existence of an
association or delegation annotation missing to fulfil the
rule. Supposing both are missing, the recognition of an
association is started by transferring theUMLClass objects
c1 andc2 to theAssociation pattern rule. Now, a reference
field in each class needs to be found. So theRefField rule has
to be evaluated twice with different parameters, classc2 and
all attributes of typec1 and vice versa. The same has to be
done for all optional annotationsReadOp andWriteOp. To
infer a composite pattern, each antecedent implication has to
reach a threshold value of 0.8 for its fuzzy belief. If no
optional annotation in the implicationi1 for Association is
found, the fuzzy belief of the association annotation is only
0.6. At least two optionalReadOp or WriteOp annotations
must be found. Otherwise the composite pattern can not be
inferred.

Figure 11 presents the informal algorithm for the evaluation
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 Figure 9: Rule for a composite pattern
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 Figure 11: Algorithm for evaluating implications

1: evaluate (Set trigger, Boolean up)
2: calculate partial match for story pattern with triggers
3: for all antecedent implications antImp do
4: if not antImp.isEvaluated () then
5: create set of triggers for antImp
6: antImp.evaluate (setOfTriggers, false)
7: endif
8: calculate rest of match for story pattern
9: if match.isComplete () then

10: calculate fuzzy belief
11: calculate minimum min of fuzzy beliefs of

antecedent implications
12: create resulting annotation object ann
13: if up and min>threshold then
14: for all consequent implications conImp do
15: conImp.evaluate (ann, true)
16: endif
17: endif
18: end
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of implications. A set of triggers and a direction for the
evaluation is given to the algorithm. First of all in line 2 a
partial match as complete as possible for the graph rewrite
rule of the implication is calculated. If the implication in
figure 9 is evaluated for example, the trigger would be an
annotation objectann1 of type Generalization. The first
match would include the two classesc1 and c2. Now, all
invalidate antecedent implications have to be verified (line 3
to 7). Evaluation for the implication ofAssociation (figure 8)
is called with triggersc1 andc2 in line 6. After the recursive
evaluation of all antecedent implications, line 8 calculates a
complete match for the graph rewrite rule. If no match can
be found, the algorithm terminates. Otherwise the fuzzy
belief of this implication and the minimum of all fuzzy
beliefs of antecedent implications is calculated (lines 10
to12). If the minimum is greater then the threshold, all
consequent implications will be evaluated in line 15.

The purpose of this detection algorithm is the principle to get
predictions about design pattern occurrences fast but best
founded. In general, this procedure creates mainly the same
results as the original inference mechanism of the GFRN.
The difference is that we highly embrace the reengineer to
make defined decisions, early in the execution. For example,
during the recognition, the reengineer has the possibility to
intervene results. Annotations can be rejected or fuzzy
beliefs can be changed by the user. The inference engine
takes these changes directly into account. For example, if the
inference machine creates an annotation for an association
with a fuzzy belief of 0.6 and the user rejects this annotation,
the inference machine re-evaluates all consequences. If the
engineer raises the fuzzy belief to 1.0, the inference machine
has to re-evaluate all consequences, too, because of the low
fuzzy belief, the annotation could have been rejected by a
higher threshold elsewhere. However, this also works the
other way around. The inference machine can ‘ask’ the user
in certain situations to make a decision, because otherwise
the produced results are not reliable enough. Another
opportunity may be that the machine directs the reengineer
to those annotations, which have been defined as important
or interesting by the user during the definition of the pattern.

Since providing a complete solution for all purposes
(patterns) in legacy systems is not possible, adaption
opportunities are very important. Our idea is to provide a
basic library of design pattern implementation variants a
reengineer can start with. After some analysis, the reengineer
can adapt the library for his special purposes.

6 RELATED WORK
In [HN90] Harandi and Ning present program analysis based
on an Event Base and a Plan Base. Therefore, they construct
rudimentary events from source code. Plans are used to
define the correlation between one or more (incoming)
events and they fire a new event which corresponds to the
plan’s intention. Annotations visualize the event flow and
plan definition. The annotation technique allows to use the
same event more than one time. This is similar to context-
sensitive graph parsing presented in [RS95]. In [PP94] Paul
and Prakash introduce a matching algorithm for syntactic
patterns based on a non-deterministic finite automaton. The

non-determinism is used to provide dummy variables for
special pattern symbols representing syntactical information
like variables or function calls. Both [HN90] and [PP94]
need one definition for one implementation variant, which
lets the approaches fail for at least legacy systems with
unknown code-styles.

An approach to recognize clichés, which are commonly used
computational structures, is presented in [Wil94], within the
GRASPR system. Legacy code to be examined is
represented as flow graphs by GRASPR, clichés are encoded
as an attributed graph grammar. The recognition of clichés is
formulated as a sub-graph parsing problem. Solving the sub-
graph parsing problem would find matches of clichés, but
this has proven to be NP-complete and lets the approach fail
for systems with more than several 1000 lines of code.

There exist also various approaches to recover design
patterns out of legacy code. Krämer and Prechelt present in
[KP96] an analysis approach to extract structural
information. Therefore they analyse only the structural parts
of a program, i.e. the header files in C++. Skipping the
dynamic parts lets their approach fail, because many patterns
are structurally equivalent, but behaviourally different. In
addition, the detection of associations, which are structural
information, can typically not be recovered without
analysing the dynamic parts, c.f [NWZ01].

Analysing structure as well as behaviour based on patterns is
presented by Keller et al. in [KSRP99]. They use a common
abstract syntax graph model for UML, namely the CDIF
format to represent the source code as well as the patterns.
Matching the pattern’s syntax graph on the program’s syntax
graph is done by scripts, which have to be implemented
manually. The approach uses sub-patterns, which allows a
flexible adaptation for certain systems, but each pattern must
be manually adapted and there exist no constraint analysis of
the patterns.

In contrast to the manual implementation of pattern
matching algorithms, Radermacher uses in [Rad99] the
graph rewrite system Progress [Zün96] to match patterns on
the program. The syntax graph model is a simplification of
the UML meta model. Radermacher also shows how to
replace bad implementations of patterns by good ones
[JZ97].

Concerning the execution, Quilici has stated that a pure
bottom-up approach is not feasible for large systems.
Especially the [Wil94] approach fails due to the very high
number of ‘base’ results, which are not used in further
analysis. A combined bottom-up and top-down approach
will produce better results [Qui94], because the analysis is
done more goal driven.

Jahnke uses Generic Fuzzy Reasoning Nets (GFRN) for
reverse engineering relational database applications [Jah99,
JSZ97]. These nets are described by reverse engineering
rules consisting of predicates and implications. Predicates
are divided into data-driven, which are unrevisable analysis
results, and goal-driven predicates. The goal driven concept
allows to suspend a time intensive analysis or to invoke them
on demand. The GFRN were applied on a commercial
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relational database system in a project with a large german
drug distributor.

7 CONCLUSION AND FUTURE W ORK
In this paper we have presented an approach to recover
design patterns from Java source code. Design patterns,
especially the gamma-patterns, are mostly informal, which is
not feasible for reverse-engineering facilities. In order to
ensure a flexible adaption, we construct our patterns out of
sub-patterns. Therefore we use graph rewrite rules and fuzzy
logic. We also introduced the difference between design
variants and implementation variants of patterns. For design
variants we provide an inheritance concept for patterns and
in case of implementation variants, we use fuzzy logic to
reduce the number of pattern definitions.

To overcome the problem of long execution times of the
pattern look-up process, we presented a highly user involved
inference mechanism. This mechanism is goal driven and
allows the reengineer to react on intermediate analysis
results in order to benefit of his knowledge.

The resulting annotation structure on top of the abstract
syntax graph may be used for different purposes.
Documenting the design and the source code may be one
reason, but also further work may be done, e.g. rewriting bad
implementations by good implementations. Another
opportunity may be to recover structural information as we
presented in [NWZ01]. It is also possible to use our
technique to review company specific code styles, which is
of main interest in developing and testing phases.

Currently, we are working on tool support for our approach.
Therefore, we want to enhance our Fujaba environment,
which already comprises of a recovering module.
Unfortunately, this module is hard-coded and inflexible. Our
first attempt was to use graph rewrite rules to look-up a
pattern, whereas method bodies were analysed using regular
expressions. The integration of the new inference
mechanism is partly done, but not finished, yet.

Future work is to provide a complete and user friendly
environment for the recovery of patterns. This includes an
easy way to define and adapt patterns and a human based
interaction graphical user interface for the execution process.
The next step will be to perform case studies and apply the
tool in other domains As case studies, we want to take the
round-trip approach [NWZ01] and the analysis of java card
application in [JNW00]. Therefore we aim to provide a
database and the opportunity to exchange and adapt patterns.

In parallel, we want to improve the inference process by
providing rules in order to control the process itself. We
assume that such an improvement provides faster and more
reliable results.
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