Design Rattern Recovery Based on Soute Code
Analysis with Fuzzy Logic

Jorg Niere, Jorg P Wadsack, Lothar Wendehals
Department of Mathematics and Computer Science
University of Raderborn
Warhurger Straf3e 100
D-33098 Rderborn
Germary
[nierej, maroc,lowende]@uni-paderborn.de

ABSTRACT using inexpressie variable names or spreading an algorithm
computer science. At the latest, the turn of the year 1999 hagftware for other deelopers dificult.

shavn that program comprehension and tool supporte@specially softare engineering principles &k
reverse engineering attained more and more attentioRjocumentation, before hand design, andveelriests tak a
Design patterns, especially thanfous @mma-patterns pack seat vis-a-vis to be the first on the retdk to produce
[GHJV95], support the forard-engineering process of gojytions, quickly Enhancement of those systensng to
software deelopment. Since theaghma-patterns are an the most dfficult parts of softare deelopment particularly
analysis product of arious softvare systems, tlyeare a f the core deelopers left the compgnin those cases first,
result of a reerse engineering process. Our idea is tOV@CO yayerse engineering techniques are applied to get an abstract
design patterns from source code to support ggpresentation andrerview of the system. In most cases the
comprehension process. Therefore, we introducexiblite a/erse engineering is done by hand, because the
definition of patterns consisting sub-pattern® &llov that epnhancement comprises of only some modifications, because
patterns inherit from other patterns and we use thg complete neerse engineering task is togpensve. This

polymorphism concept to at least reduce the number ggads gentually to patcharks or hot-fies and is more an
pattern definitions. W propose to use inheritance for designaggraation than an imprement.

variants and fuzzy logic for implementatioariants of a)
pattern. W& discuss adintages and disagntages of the tw ~ TO overcome these problems computer science has
definition possibilities and present axeeution mechanism developed 'arious approaches of werse engineering

to recaver patterns in source code. processes [Jah99, il84] and automated tools to support
those processes, e.g. clustering techniqugpicdlly, the
Keywords techniques stop at a certaingdee of granularity where the
design pattern regery, UML, graph grammars, fuzzy logic, reengineer has to perform the more detailed analysis by
semi automatic process hand, cf. [CFM93]. Other approaches try to identify the

behaiour of certain program partsytbfail for lage systems.

1 INTR ODU;TION] In general, this results from the high number of syntactical
Computer science has swwed the lagest softvare update djfferent tut semantically equal implementations.

problem since its birth, namely the yeaotthhousand (y2Kk)) ,)
problem. Seeral billion lines of code were vesticated in !N our previous work we hae presented verse-engineering
order to ensure the correct functionality of the systems. BugPProaches for the analysis ofvaa card applications
even eperts were afraid of the turn of the year 1999 becausgNWO00] and to support round-trip engineering [NWZ01].
they did not knov exactly if their solutions wrk in all cases. Both approaches areewy similar and we spotted, that yhe
However, the y2k problem as mainly a product of a casual fits for other purposes too, since both approaches eme v
chain of human made decisiongeo decades of geloping ~ technical and domain specific, in this paper we present a
and enhancing a system. Decisions made during thgeneralized technique. &\introduce a common notation,
limited system resources, or a contract with a hard-deadlin@resent the technique on theagnple of recvering design

or there are currently no wopers gailable. In addition, Pafterns [GHJVI5] from Ja source co

developers hee certain personal programming styles, €.9The rest of the paper is structured as fetipln section 2 we
give a short introduction to design patterns, especially their
definition for reverse engineering needs using the UML.
Section 3 describes our approach to vecalesign ariants

1. Our approach is not limited to Java, other object-oriented lan-
guages are also imaginable, e.g. C++ or Eiffel.

of certain design patterns.eMse fuzzyness for the reeoy leaf class is not needed.ewtbok this information out of the
of implementation &riants, which is introduced in section 4. collaboration description of the leaf: “If the recipient is a
The &ecution mechanism of our pattern recognition systenteaf, then the request is handled direttlyhis does not
and the interaction with the reengineer is described in thirce tan gplicit Leaf class inheriting fronComponent, but
following section 5. Subsequenthye discuss relatedosk could also be handled by a subclassGofmposite. For
and close the paper with some conclusions and futark.w example, such a design is practised in theaJawing API

2 RECOVERING DESIGN PATTERN [ELWO8, HC98a, HCI8D].

The design patterns presented in [GHJV95] are an analysis Component
result of dverse softare systems deloped in the -
laboratories of Big Blue. In the folldng, we call those operation()
patterns gmma-patterns. Keever, the intend of thegmma-
patterns is to prade a collection of ‘good’ design principles nT children
and discuss their adatages and disadntages as well as
their relation to other patternsof~each pattern a sample r— = = = —
implementation in the C++ language igegi.

r —

Leaf Composite
Although gmma-patterns are a product of averse- post

1 parent
engineering process, thare applied in forard-engineering operation() operation() ®--| - {forall cin children
tasks. Br example to deelop nev software or for its | | ¢.operation()
documentation. @ support such forard engineering, |- — — — -

programming languages Ve been etended by ne& Figure 1: Composite fttern

language constructs [CILS93, BFLS99, KS9&]jr Bxample
[BFLS99] etends Eifel [Mey88] with a nev ‘pattern’ Applying design-patterns &nma-patterns) for reserv
language construct and describes its compilation. engineering leads to weral problems, which ka to be
solved. First, design patternsveato be formal defined, in
'order to automate their detection, because the informal

where each language is a collection of patterns the joqerined parts of theagima-patterns are not feasible for
gamma-patterns for a certain domain or application problen}ool supported (semi-Jautomatic reesy. Second, most

e.g. concurreng control [CKV96]. Since each language jnhjementation ariants of a pattern ke to be cwered by

d_eals W'th a certain problem In a specific _domal_n, th‘?he definition. And third, thexecution mechanism must be
discussion of adantages and disadntages is mainly ogciantin an appropriate time scale

problem drnen and particularly based on a special
application. In addition to implementationaviants of one design pattern,
here also xst different design ariants of one pattern, e.g.
i@ure 5 shas two design ariants of the composite pattern.

A future trend is to pnade so-called pattern-languages

Design patterns are also used to document certain parts o%

design. Mag techniques hee been deeloped 10 ongidering lgagy systems, those aviants become

z?utoma(;lcally derie a doo?{ﬁmentanon ?}”t of avlgn dtehagn especially important, because yheontain typically no pure
(forward engineering). Other approaches analyse the SOUrg&m s Sotternut use some deftions.

code and try to get an automatic generated documentation
out of it (reverse Engineering), cf. [SS00]. Those approache®ur Approach

mainly focus on method-bodies and parts of method-bodiesyr recwering technique for design patterns is based on the
in order to document them. In this case design patterns agnotation of an abstract syntax graph (ASG). Therefore we
very helpful, because thecomprise information about have to parse the source code. Whereas, our abstract syntax
classes, methods, atties, and their relation among eachgraph model is more or less a simplification of the original
other So, our aim is to rever design patterns and annotate yML meta model [UML] for performance reasons. In case
all design parts, which are comprised by the patternef Jaya source code we use thevaaC (Jsa Compiler
Consequentlythe annotated dgsign can the_n be used _foq;omp”er) [JCC] to generate a parser out of theemi
various purposes, e.g. automatic documentation or redesiggrammar where the back-end of the parser creates directly

The Unified Modelling Language (UML) [UML] prides a ~ @" ASG.

pattern construct,ut it has no defined semantics. It alo Basically the parser generates a rudimentary UML class
only to annotate a current design, mainly class diagrams fefiagram containing classes with attries and method
documentation and readability reasons:. &le, one of declarations as well as inheritances between the classes.
the famous gmma-patterns is the composite pattern. Figuryote, so &r the class diagram does not contairy an

1 shavs the structural part of the composite pattern. Agssociations or other dependencies, cf. [NNWZ00]. Method
gamma-pattern description consists of 12 additional part$odies itself are parsed as sityi diagram [KNNZ99a]. Br

e.g. the patters’ name, its intention, the structure, themore details about our imgeted meta model see
behaiour, etc. The composite pattern in figure 1 is alreadyKNNZ00].

adapted and contains more information as the original
structure, i.e. the dashed classaf and its inheritance
relation". This means, that for a composite patternxaticit

1. We took the notation from the graph grammar field, where op-
tional nodes and edges are specify by dashed lines [ZUNn96].

As mentioned before, our approach bases on the annotatidefinition. The main di€rence is, that patterns are
of the syntax graph. Our technique is similar to language armcbnstructed out of sub-patterns. Figure 2 wshoour
graph parsing techniques, cf. [RS95]. wéwer, the definition of the composite pattern &k from [GHJIV95].
annotated parts (nodes in the syntax graph) are n@&ince we want to receer patterns, for its definition we use
consumed. Thus, nodes may be members afiows an object diagram at the ASG/é. In comparison to figure
annotations (patterns). 1 we left out theLeaf class, because itxistence is not
Pattern definition necessarys.o. Thi_s definition alles us to concentrate and
recover the essential parts of a composite pattern.

The pattern definition in [GHJV95] consists of more) o)))
informal parts than formal ones. The most formal one is thdhe composite definition consists of three kinds of ‘objects’,
structure part of a pattemtefinition, because it is typically I-€- Some with val shape, some original UML objects, and

a class diagram. But, fokample, the intention of the pattern SOme equal bas. Owl shaped objects represent other
is part of its definition, written in prose. Andvem the Patterns whereas the original rectangle shaped objects
collaboration part is mostly informal. But for tool supported®Present nodes in the abstract syntax graph. The equal
reverse-engineering, a formal definition is indispensalde. F 00Xes are just an abhsiation of ary kind of object, either
example, Kramer and Prechelt shin [KP96], that it is not annotations as well as ASG nodes. Each object must be an
sufficient to analyse the structure anbecause this leads to instance of a certain class in the domain model, cf. figure 3,
minor positve results only and to mgralse-posities. and each link between érobjects must be an instance of an

.] - association in the domain model. The obgtype and the
Therefore, in a first step we Ve specified most of the |ink names in the object diagram must be the same as the
gamma-patterns using the Fujabervironment [FNTZ98, corresponding class and association names. They)(gre
KNNZ99b]. Fujaba supports our igeated abstract syntax object :Composite marked with «create» indicates, that a
model and alles to generatexecutable Jeaa code out of a ney annotation is created, if the black part in the underlying
given specification. In case of thargma patterns, we used syntax graph is fourfd This includes the (gy@ links from
class diagrams for the specification of the structuvethffe the annotation object to the other objects, too.

behaiour we used story-diagrams, namely a combination o
actvity-diagrams and collaboration diagrams, to specify the | UMLMethod thod UMLGeneralization
patterns behaiour. On the one hand the benefit is a methods
precisely defined pattern (structure as well as \debsg), A A n v n n
which could be lookd-up in source code, automaticalBn © _ ’b% super| sub
the other hand, we lose the patterfieible usage because % % %% v
we fixed eactly one implementation. & © |
m leftClass p» cass |
o . UMLClass
super :Generalization 1N_Delegation rightClass b
assoc A A
v super| sub
Association Generalization
- T
assoc
:Association ' sub p
leftClass rightClass m super p m
class assoc class Composite iSA p MultiLevellnherit
caliee (LN_Delegation)——— Figure 3: Domain model (cut-out)
‘UMLMethod ‘UMLMethod The domain model in figure 3, represented as a class
———— ———— diagram, gtes an werview of the emplged pattern parts
_ . . and ASG nodes and their relation to each otldasses
Figure 2: Composite patten (object structure) representing pattern annotations are medrikvith a nes

stereotype «#tern», which is shvn as a specific icon
To overcome this infbeibility, we reoganized the patterns above the class names. Associations are bidirectional, b
and allav to separate common parts of patterns intovam o consist of a defined read direction, which indicates for
example that th&€omposite pattern annotates a@ssociation

1. The Fujaba (From UML to Java And Back Again) environment
is developed by the AG Softwaretechnik at the University of Pa-2. This semantics is similar to graph rewrite rules, cf. [R0z97,
derborn (www.fujaba.de). Z0n96]

definitions. As an xample we allw the definition of
patterns consisting of sub-patternso Tacilitate such
definitions it is sufcient to define a me annotation called

T MultiLevellnherit, which annotates the sup@nd subclass of
TLeaf! two connectedseneralizations. Figure 6 shas the definition
of the multi-level-inheritance pattern.

children children

.
[]
[}
[]
[
[}
[]
[}
]

parent

Figure 5: Variants of the composite patten

and Generalization as well as tw UMLClass nodes of the
ASG. The dedult cardinality is ®actly one in the read
direction and 0..1 in theverse direction.

In general, common parts in patterns are defined by the
own pattern definition. 6 example, associations and
delegations (method calls are dgéded to an associated
class) mist in mary design patterns. Figure 4 st the

=

:UMLClass

Super Figure 6: Multi-Level-Inheritance pattern

:UMLGeneralization

The multi-lesel-inheritance pattern is structural, namely the

annotation structure, eqailent to a simple generalization
sub pattern. Therefore, in the domain model, cf. figure 3, the
- multi-level-inheritance pattern is a ‘subclass’ of the
:UMLClass generalization pattern. Consequenttiie MultiLevellnherit
) . pattern inherits all associations fraBeneralization pattern
Figure 4: Generalization patten and is aGeneralization pattern, in the sense of object-

generalization pattern definition, which is a straight foov oriented concepts.

definition, because there alreadyists an ASG node During the detection process, the polymorphism is used to
UMLGeneralization that represents an inheritance relationgain more fleibility in the process. & example, running the
between tw classes. detection algorithm on the rightasiant of the composite
attern in figure 5, results in oam(four including the leafs
3 DESIGN VARIANT_S .)) generalizatio% annotations. Of]lle\(betwee(rnmp%nent and)
Program comprehension techniques are typically applied fafjassa and the second betweetiassA and Composite.
legacy systems in order to get an abstract representation gfjithout the multi-leel-inheritance pattern no composite
the softvare. Design patterns, especialgngma-patterns are pattern vould be found. But, using it creates an annotation
one opportunitybut mostly lgjacy systems do not contain MuyltiLevelinherit between Component and Composite.
pure original patterns. #Vanalysed someuiaprograms and Because avultiLevellnherit annotation is aGeneralization
libraries, for &le the swing library [BIV98], and annotation it may seevas a match for th@eneralization
Fujaba itself [FNTZ98] and found some detions of the annotation required in figure 2 and a composite annotation is
composite pattern, which are siin figure 5. created for the right xample in figure 5. Note, a
On the left hand side, theraigts no eplicit component MultiLevelinherit annotation may sesvas a maich for a
class, bt a direct aggigation at the composite class itself. G&neralization in figure 6, too. Theretlye recursie use of
This allovs each node in the tree toveechildren. Jpically ~ the multi-leel-inheritance pattern alis to detect
the Leaf class werwrites the access methods for theCOMPOSite patterns with more than one class in the
container or do not access the container in one ofwits o INNeritance hierarghfrom Component to Composite.

methods. On the right hand side, the inheritance relation ifo recaver also the left ariant of the composite pattern, we
extended by inserting another claSkssA, which inherits could either add another sub-patterrGeheralization in the

from Component andComposite inherits fromcClassA. This domain model or we could define ameub-pattern of the
design wariant allavs two different leaf ariants, which hee composite pattern without inheritance in it. Both solutions
common properties. are feasible it the second one is bettergaeding the
Such design ariants of one pattern result typically in a pumber of annotations created, because otherwise each class

definition for each ariant, in our case wnav composite N the abstract syntax graph will \iea a generalization
annotation, automatically

4 IMPLEMENT ATION VARIANTS

1: // Variant 1 .
In addition to design ariants, i.e. after handling the | 2. puplic class ClassA
multitude of design patternaviants, we hae to deal with 3:{ public ClassB clazz_b;
implementation ariants. Br some parts of a design pattern| 4.3 -
there aist several ways to implement them.oF simple 5
syntactical ariants, e.g. i=i+1 vs. i++, we refer to parser| g variant 2
techniques [ASU86, JCC] for details. 7: public class ClassB

Like mentioned before, analysing only the structure is not 8 { Private ClassA clazz_a;
sufficient, cf. [KP96]. Method bodies ta to be analysed, | 9 -
too, in order to raise the quality of the results. There, wgl0: Ppublic void addClassA (ClassA value)
discorered a multitude of implementationanants, one |11: {..}
example are head- vs. foot-controlled loops. The mass aft2: - o
different implementation @ys is not only limited to |13: publicvoidremoveClassA(){..
methods. Associations can also be codedveraéariants. | 14 public ClassA getClassA() { ... }
In fact, the receery of method bodies and associations 15:}
induces the same problems, i.e. the handling of thel® - _ _
syntactical ariants for the same semantics. Here we focusl?: // Variant 3(according to Fuja

on associations onlgue to the lack of space. 18: public class ClassC
19: { private ClassD clazz_d

First, we hae different kinds in multiplicity of binary |20: ..
associations, namely One®ne, OnedMary, MaryToOne, 21: public void setClassD (ClassD value)
and MaiyToMary. Additionally consider qualified, sorted |22: {..}
and n-ary associations. é\presume, that associations are|23: public ClassD getClassD(){ ... }
bidirectional implemented, otherwise we call them|24:}

references.
Figure 7: Variants of association implementation

Second, an association is composed of teferences, which

we hare to distinguish in their cardinality (0..1, 1, n, 1.n) giagram with a certain geee of confidence.gThandle more
To manage this mass of annotation definitions, wee ha than one association betweerotolasses, @in, we hae to

developed a domain mode_l z_inalogous to figuredd.details analyse the method bodies for thleit assignment.
see [NWZ01], where a similar approach to support round-

trip engineering is presented. This hiergrchoncept Figure 8 shws the rule that describes voto find an
controls annotationx@losion, lut does not sol it entirely ~ @ssociation. \& assume, that an association betweem tw
We still annotate information that may not be requested arfeasses consists of one attri® in each class referencing the
this leads to scalability problems. other class. So, in the ASG there should be a clagdth an

. _ i attribute a1 referencing class2 and vice ersa. There must
Therefore we introduced fuzzy logic [Zad78] in ourgiso pe annotation objectsin2 and ann5, that represent
recovering process. In mgrcases, we only need to r#€0 these references. oTconfirm the supposed association
the information that an associatiorite, cf. the composite petween classest and c2, optional nodes - indicated by
pattern figure 2. The intentional omitting of information in gashed lines - are added. Objaat1 annotates, that there is
order to control annotatiorxglosion, leads to less reliability 5 method1 in classc1, which reads attrilte a1 and returns
For example, figure 7 shes implementation ariants for its value. This is ensured by th%ead_Op pattern, which
One™One associations. Here we annotate the source codgalyses the methad’body appropriately Method w1
directly, because the ASG iery lage and gies no ney asSigns aalue to attrilteal. For classc2 it is the same with
insights. In ariant 1, just a public reference to the associate@ethodsr2 andw2. Finally, an annotation objecinn7 is
class is supplied, whereasriant 2 implements a pete Créated to represent an association between clessesic2
reference and puides read/write operationso Fecaver the ~ With confidence 0.6.

multiplicity of the association, the method bodiesento be |y general, each rule defines a so called fuzzy belief and a
analysed. This is done in the ReadOp and WriteOp with th@reshold walue between 0.0 and 1.0. Thare specified in
same principle as presented here, cf. [NWZ01]. the top left corner of the implication after the implications

Variant 3 difers from \ariant 2 by implementing only one Name. In figure 8 the implicaticn has a minimum fuzzy

setClassF(null)). All-over the common part of these three indicates the certaintyhat a gien sub-graph represents the

variants is an attrite pointing to another class. The Seéarched pattern.

common parts to infer an association is that thasses point | this ecample the fuzzy belief isvaluated as follws. If

to each otherThus the reengineer decided that such a pair inly the necessary parts of the association are found, the

references is sfiient to indicate an association in the classiyplication i1 has a certainty of 0.6.0F each optional
annotationannl, ann3, ann4 andanné, the fuzzy belief of

1. The same holds for associations implemented as a separate clagse optional node is added to theemll fuzzy belief. So, if a

provide better results later on.
@ In summary we o/ercome the flw of information with
results from the multitude ofaviants by a hierarghconcept
ann2, ann5 annl, ann4 ann3, ann6

of sub-pattern and annotations. Combined with optional
i1:0.6/0.5 — parts in the rules we appraise the fuzalues for the
A cL:UMLClass right.7ass certainty of our propositions.

methods . ~ fatribs . methods 5 INFERENCE MECHANISM

r——-——-=-=-=- bl Fr= === = = = hl
| |

rl:UMLMethod | | al:UMLALtrib | | w1:UMLMethod | Concerning the search of patterns, Jahakd Vélenstein

_______ a

Sathod ” field” T Theld "~ “field " rmeitho state in [JWO0Q] that “reerse engineering is an imperfect

field ~ [field_ method process duien by imperfect knoledge”. The propose, that

\ﬁﬁnl;Read\(fm ann2:RefField) @nn3:WriteOp reverse engineering tools should be used as a media for
~ _0.1/08 _~ f ~.0.1/08 _ - reengineering where the reengineaing high support for all
re ere”ﬁgmass performed tasks and could e in the analysis whewer
_ c2:UMLClass N ann7:Association needed.
methods . ~ lattribs ™ { methods Once a pattern is defined, it has to be veced in lgacy
| ”2:2UMLMethod | | a2:UMLAttrib | | w2:UMLMethod | code. D do so, we need an inference engine. Jahnk
_______ developed Generic Fuzzy Reasoning Nets (GFRN) for

~ field_ : method reverse engineering of relational database applications

/a,;n;r.,;'e;db«/\ anns:RefField) 2nn6:WriteOp [Jah99, JSZ97]. These nets are described hierse

: p ~ X , = . [IS

‘. 01/08 - ~.0.1/0.8 engineering rules consisting of predicates and implications.
Bl reference An inference enginexpands these GFRN on thegdey

database code into Fuzzy Petri Nets (FPN) araduates
them. D senre the purpose of reeering design patterns and
clichés, we will adapt this inference engine. Originally
GFRN implications are formulated by relational algebra. W
Figure 8: Rule br an association will replace the relational algebra in implications by graph
rewrite rules and introduce analysis machines for the
inference mechanism, that interpret these rules appropriately

Association

match for all optional nodes can be found, implicatiowmill
return a certainty of 1.0. Thisale is saed by the created
annotation objecinn7. The thresholdalue of implicatioril ~ As mentioned before, thedag code is parsed into an
prevents the use of annotations (eagn2 andann5) with abstract syntax graph similar to the UML meta model. The
fuzzy beliefs lover than 0.5. Optional nodesveatheir avn ASG is analysed with graphwete rules stemming from
threshold alues, cfannl, ann3, ann4 andanné in Figure 8. [FNTZ98]. The/ look-up and annotate sub-graphs of the
ASG. To present solving a sub-graph parsing problem
[Meh84], we introduced annotation objects to the ASG.
These annotation objects serlpoth, as starting points for
searching sub-graphs and as objects that hold information
about the found pattern, such as fuzzy beliefs and
participating objects.

Applying fuzzy logic lets us define a look up rule for a
pattern which is not a leaf in the look up hiergrabhildren
in the hierarch may recoer more detailed informationoF
example, we emplpa similar fuzzy rule to recognize a more
detailed association, e.g. a Op&lary association. Of
course, an identified OneMary association with a certain
fuzzy belief leads to an association annotation with the sam& fuzzy rule (pattern) for searching a composite design
fuzzy belief. pattern is shon in figure 9. The implication infers with a
certainty of 1.0, if a match for this graphwrée rule is
' found. The predicateSeneralization in the upper left is
painted by a thick val. Such predicates senas starting
aiEJoints of the inference process. The generalization pattern
&5 on the lovest level in the hierarch which we can infer
ctly from the ASG. Consequentlye tale it as a starting
nt in this eample. In general, each pattern, which
consists only of abstract syntax graph nodes care s&sv
tarting point. If there are marpossible starting patterns,
those are preferred, which are part of patterns on a high le
of the hierarcip. Also, the user can define predicates as
ﬁarting points, which are preferred during tieacaition. In
contrast to starting patterns, associations orgdétens are

In addition, we preide the definition of contra indications
which can impruge the recognition processoFexample, the
Java programming language does notvide user defined
datatypes. User defined datatypes must be implemented
certain class, which is immutable. Immutable means that atlJire
values of an instance of the class cannot be changed after i
creation, e.g. comptenumbers. The immutable property can
be defined as a patterndilassociations. Such a class may b
annotated by an immutable pattern during the recognitio
process. In case of UML, classesiing a reference to an
immutable class are handled as a datatype displayed as
attribute and not as an awoto the class. Thisatt can be

underlined by defining a contra indication from the lichés with a lot of ariants. A generalization is usually

immutable pattern to the association pattern. In generalo,,ioq by ady word in the source code. It can be directly
contra indications can be used where language constructs ?Jrfrsed into an ASG

ambiguously used to implement fdifent design items.
Fixing one solution, e.g. a datatype, early in the analysis, c#ince generalization alongvezal levels is alloved by a

Association

ann2

1:N Delegation

ann3

Generalization

annl

i2:1.0/0.8 o
annl:Generalization

subClass
isA

annél:CoD posite
subClass uperﬂ%

cl:UMLClass assoc c2:UMLClass

leftClass rightClass
ann2:Association class
assoc
%ee

class

ann3:1:N Delegation

ann4

Composite

Figure 9: Rule br a composite patten

composite pattern, the structural inheritance introduced i
section 3 is praded by our enhanced GFRN. The
annotationannl in figure 9 means botBeneralization and
MultiLevellnherit, cf. figure 4 and 6.

The original GFRN used in an earlier approach [JNWO0O0
have to be changed to support these figatures. First of all
the relational algebra has to be replaced by graphitee
rules as mentioned ab® Then the inference machine has to
be adjusted. The old strgie creates basiaéts out of all
axioms - predicates with no antecedent implication. Thi
mechanism is no longer feasible. AxiomselikeadOp or
RefField would produce too much basiscts when we
reengineer lgagy code of seeral thousand lines of code, cf.
[Wil94].

We hae deeloped an algorithm that d#frs from the
original inference mechanism of GFRN. Oumnapproach
for the recognition of design patterns and clichés can b
compared to a seed, that first\gsoup to the light and then
builds some roots to fortify its stabilityPredicates, that are
preconditions to an implication, can be triggered with
additional parameters by this implication. So we are able f
mark only a fev axioms as basiafts. Axioms lile RefField
andReadOp can be triggered to reduces@stications to the
objects of interest. W will explain the algorithm by the
composite patternxample belaov.

The recognition is kickd of by an UMLGeneralization
objectg in the ASG. It triggers the rule for the basitf
Generalization and an annotation object for the otw
participating classes c1 and c2 is created. Note,
Generalization pattern lies on the Veest level of the
hierarcly. Since the rule in figure 9 declares the
Generalization as a precondition for a&omposite, the
Composite is triggered. Nw, the direction changes from

Composite

1N_Delegation Association

cl.attribs, c2

RefField
9

|
g:UMLGeneralization

ASG

Figure 10: Growth of root seach

bottom-up to top-den, in order to manifest the result. As

specified in figure 9, to infer a composite we also need an

Association and1N_Delegation, too. These last ones may not

be detected, yet. This results from theéstence of an

association or detmtion annotation missing to fulfil the

rule. Supposing both are missing, the recognition of an

association is started by transferring thidLClass objects

pl andc2 to theAssociation pattern rule. N, a reference

field in each class needs to be found. SdaréfEield rule has

to be ®aluated twice with dferent parameters, clasg and

all attributes of typecl and vice ersa. The same has to be
one for all optional annotatior&eadOp and WriteOp. To

nfer a composite pattern, each antecedent implication has to

reach a thresholdalue of 0.8 for its fuzzy belief. If no

optional annotation in the implicatian for Association is

found, the fuzzy belief of the association annotation is only

0.6. At least tw optionalReadOp or WriteOp annotations

$nust be found. Otherwise the composite pattern can not be

inferred.

Figure 11 presents the informal algorithm for tkieleation

1. evaluate (Set trigger, Boolean up)
2: calculate partial match for story pattern with triggers
3: for all antecedent implications antimp do
e 4: if not antimp.isEvaluated () then
5: create set of triggers for antimp
6: antimp.evaluate (setOfTriggers, false)
7 endif
0 8: calculate rest of match for story pattern
9: if match.isComplete () then
10: calculate fuzzy belief
11: calculate minimum min of fuzzy beliefs of
antecedent implications
12: create resulting annotation object ann
13: if up and min>threshold then
14: for all consequent implications conlmp do
15: conlmp.evaluate (ann, true)
a16: endif
17: endif
18: end
Figure 11: Algorithm for evaluating implications

of implications. A set of triggers and a direction for thenon-determinism is used to pide dummy wriables for
evaluation is gien to the algorithm. First of all in line 2 a special pattern symbols representing syntactical information
partial match as complete as possible for the graphitee like \variables or function calls. Both [HN90] and [PP94]
rule of the implication is calculated. If the implication in need one definition for one implementaticariant, which
figure 9 is galuated for gample, the trigger auld be an lets the approachesif for at least lgagy systems with
annotation objectainnl of type Generalization. The first —unknavn code-styles.

match would include the tw classesl1 andc2. Now, all
invalidate antecedent implicationsvieato be erified (line 3
to 7). Ewaluation for the implication ofssociation (figure 8)
is called with triggers1 andc2 in line 6. After the recurge

An approach to recognize clichés, which are commonly used
computational structures, is presented inlfd], within the
GRASPR system. Igacy code to be »amined is
evaluation of all antecedent implications, line 8 calculates éepresentgd as ﬂogLaphs by GEASPR’ CI.'C.heS]‘:"r? ehn'co.ded
complete match for the graphamgte rule. If no match can ?S an attribted graph grammar e recognition of cliches is
ormulated as a sub-graph parsing problem. Solving the sub-

be found, the algorithm terminates. Otherwise the fuzzyéraph parsing problem auld find matches of clichéspb

belief of this implication and the minimum of all fuzzy his has N to be NP-complete and lets the aoproadh f
beliefs of antecedent implications is calculated (lines 1 : proen p . Pp
or systems with more thanvaral 1000 lines of code.

to12). If the minimum is greater then the threshold, al
consequent implications will beva&uated in line 15. There aist also ‘arious approaches to re@s design

The purpose of this detection algorithm is the principle to g atterns out of gagy code. Kramer and Prechelt present in

predictions about design pattern occurrenaest fut best ! P96 an analysis approach toxtect structural
founded. In general, this procedure creates mainly the Sarﬁrgormatlon. Therefore theanalyse only the structural parts
results as the original inference mechanism of the GFRNY! @ Program, i.e. the header files in C++. Skipping the
The diference is that we highly embrace the reengineer tgynamm part.T,l lets thellr app;nrjoattftnhfb_ecau"se g]grrpatterlns
malke defined decisions, early in theseution. ler example, a(rj%'s.tructﬁrady equa entf, t behaioura 3;] r'] erent. In |
during the recognition, the reengineer has the possibility t8f ition, the detection o ”assomatlons, whnic are.shtructura
intervene results. Annotations can be rejected or fuzzy ormation, can typically not be reeered without
beliefs can be changed by the usBEne inference engine nalysing the dynamic parts, c.f [NWZO1].

takes these changes directly into account.ékample, if the Analysing structure as well as befaur based on patterns is
inference machine creates an annotation for an associatipresented by &ller et al. in [KSRP99]. Theuse a common
with a fuzzy belief of 0.6 and the user rejects this annotatiorabstract syntax graph model for UML, namely the CDIF
the inference machine rea@uates all consequences. If the format to represent the source code as well as the patterns.
engineer raises the fuzzy belief to 1.0, the inference machirngatching the patters’syntax graph on the progransyntax
has to re-ealuate all consequences, too, because of the lograph is done by scripts, whichJeato be implemented
fuzzy belief, the annotation could veabeen rejected by a manually The approach uses sub-patterns, whichwalla
higher threshold elséhere. Havever, this also wrks the flexible adaptation for certain systemst pach pattern must
other vay around. The inference machine can ‘ask’ the usefe manually adapted and thexéseéno constraint analysis of

in certain situations to maka decision, because otherwisethe patterns.

the produced results are not reliable enough. Another . .

opportunity may be that the machine directs the reengined? contrast to the manual implementation of pattern

to those annotations, which\abeen defined as important Matching algorithms, Radermacher uses in [Rad99] the
or interesting by the user during the definition of the patternd"@Ph revrite system Progress [Zin96] to match patterns on
the program. The syntax graph model is a simplification of

Since proiding a complete solution for all purposesthe UML meta model. Radermacher also vehichav to
(patterns) in lgacy systems is not possible, adaptionreplace bad implementations of patterns by good ones
opportunities are ery important. Our idea is to pride a [JZ97].

basic library of design pattern implementatioariants a . . I

reengineer can start with. After some analysis, the reengine§PNcerning the >ecution, Quilici has stated that a pure

; ; ; bottom-up approach is not feasible for gar systems.
can adapt the library for his special purposes. Especially the [W94] approach dils due to the ery high

6 RELATED WORK number of ‘base’ results, which are not used in further
In [HN90] Harandi and Ning present program analysis base@nalysis. A combined bottom-up and topatioapproach
on an Eent Base and a Plan Base. Therefore; tumstruct Wil produce better results [Qui94], because the analysis is
rudimentary eents from source code. Plans are used télone more goal dren.

define the correlation between one or more (inComin@yapnie yses Generic Fuzzy Reasoning Nets (GFRN) for
events and thefire a nev event which corresponds 10 the g erge engineering relational database applications [Jah99,
plan’s intention. Annotations visualize theeat flov and JSZ97]. These nets are described byerse engineering
plan definition. The annotation technique aoto use the 1 ja5 consisting of predicates and implications. Predicates
same egent more than one time. This is similar to catte 56 gyided into data-drien, which are unwésable analysis
sensitve graph parsing presenteq In [RSQ,S]' In [PPS]IP results, and goal-dren predicates. The goal ¢i#h concept
and Prakash introduce a matching algorithm for syntactic;yus to suspend a time intemsianalysis or to iroke them

patterns based on a non-deterministic finite automaton. Th, yemand. The GFRN were applied on a commercial

relational database system in a project with gelagerman REFERENCES

drug distritutor [ASUS6] A.V. Aho, R.Sethi, and J.D. UlimaniCompilers —
7 CONCLUSION AND FUTURE W ORK Principles, Techniques and Tool&ddison Wesley,

In this paper we he presented an approach to remo 1986.

design patterns from Ja source code. Design pattems'[BFLSQQ]S.BUnnig P Forbig
especially the gmma-patterns, are mostly informal, which is) .
not feasible for reerse-engineeringatilities. In order to . . .
ensure a fleble adaption, we construct our patterns out of terns Technical Report 258-8/1999, University of Ha-
sub-patterns. Therefore we use graptrite rules and fuzzy gen, Hagen, Germany, September 1999.

logic. We also introduced the é#frence between design [CFM93]A. Cimitile, A.R. Fasolino, and RMarascea. Reuse
variants and implementatiorawvants of patterns.df design Reengineering and Validation via Concept Assignment.
variants we praide an inheritance concept for patterns and |, proc. of the & International Conference on Software

in case of mplementauonamant;, we use fuzzy logic to Maintenance pages 216—225. IEEE Computer Society
reduce the number of pattern definitions.
Press, September 1993.

; . CILS93] D.D. Cowan, Rlerusalimschy, C.J.P. Lucena, and
pattern look-up process, we presented a highly useivied [, ’) ’ ’
inference mechanism. This mechanism is goaledriand T.M. Steplgn. Abstract data viewStructured Program-
allows the reengineer to react on intermediate analysis Ming 14(1):1-13, January 1993.

R.Lammel, and
N. SeemannA Programming Language for Design Pat-

To overcome the problem of longxecution times of the

results in order to benefit of his kmiedge. [CKV96] J.O. Coplien, N.L. Kerth, and J.M. Vlissidézat-
The resulting annotation structure on top of the abstract ternLanguages of Program Design (VolumeAZjdison
syntax graph may be used for fdient purposes. Wesley, 1996.

Documenting the design and the source code__may be 0T\§LW98] R. Eckstein, MLoy, and DWood, editorsJava
reason, bt also further wrk may be done, e.g.weiting bad Swing b’ReiIIy 1’99é ' ' '

implementations by good implementations. Another
opportunity may be to reger structural information as we [FNTZ98]T. Fischer, JNiere, L.Torunski, and AZindorf.
presented in [NWZO1]. It is also possible to use our Story Diagrams: A new Graph Rewrite Language based

technique to ndew compaly specific code styles, which is on the Unified Modeling Language. In Bngels and
of main interest in desloping and testing phases. G.Rozenberg, editor®roc. of the 6' Int. Workshop on
Currently we are wrking on tool support for our approach. Theory and Application of Graph Transformation
Therefore, we want to enhance our Fujabavenonment, (TAGT), Paderborn, Germangpringer Verlag, 1998.

which already comprises of a reesing module. o
Unfortunately this module is hard-coded and inflde. Our [GHJIVO5] E. Gamma, RHelm, R.Johnson, and Ylissides.

first attempt v&s to use graph weite rules to look-up a Design PatternsAddison Wesley, Reading, MA, 1995.

pattern, whereas method bodies were analysed ugjotare [HC98a]C.A. Horstmann and GCornell.Core Java 2, Volu-

expressions. The ingeation of the ne inference me 1: Fundamentalsava Series. Prentice Half! &di-
mechanism is partly doneytnot finished, yet. tion. 1998.

Future vork is to proide a complete and user friendly [cggh)c.A. Horstmann and Gornell.Core Java 2, Volu-
ervironment for the reogery of patterns. This includes an me 2 Java Series. Prentice HalPt &dition. 1998

easy vay to define and adapt patterns and a human based
interaction graphical user intade for the xecution process. [HN90] M. T. Hanrandi and . Ning. Knowledge Based

The net step will be to perform case studies and apply the Program Analysis. Idournal IEEE Software, volume 7,
tool in other domains As case studies, wanimo tale the number] pages 74-81, January 1990.

round-trip approach [NWZ01] and the analysis ogjaard _

application in [JNWO0O]. Therefore we aim to pide a [Jah99]J.H. JahnkeManagement of Uncertainty and Incon-
database and the opportunity i@leange and adapt patterns. sistency in Database Reengineering Proced3ed the-

. . sis, University of Paderborn, Paderborn, Germany,
In parallel, we vant to impree the inference process by

o ; . September 1999.
providing rules in order to control the process itselfe W
assume that such an impement proides faster and more [JCC]SUN MicrosystemslavaCC, the SUN Java Compiler

reliable results. Compiler. Online at http://www.suntest.com/JavaCC
ACKNOWLEDGEMENTS [JNWO0O0] J.H. Jahnke, Niere, and J.P. Wadsack. Automated
We thank Ulrich A. Nickl and Albert Ziindorf for hard Quality Analysis of Component Software for Embedded
discussions, man contritutions to this paperand proof Systems. IrProc. of the 38" Int. Workshop on Program
reading. And manthanks to Jigen Maniera and Friedhelm Comprehension (IWPC), Limerick, IrlantEEE Com-
Wegener who hae prosided us with the neest technical puter Society Press, 2000.

equipment to produce this pap&hank you.

10

[JSZ97]3.H. Jahnke, WSchéfer, and AZundorf. Generic

relational database applications. Pnoc. of European
Software Engineering Conference (ESEC/E3Ember
1302 in LNCS. Springer Verlag, September 1997.

[NNWZ00] U. Nickel, J.Niere, JWadsack, and AZundorf
Fuzzy Reasoning Nets as a basis for reverse engineering Roundtrip Engineering with FUJABA. IRroc of 2

d

Workshop on Software-Reengineering (WSR), Bad Hon-
nef, GermanyTechnical Report University of Karlsruhe,
2000.

[JWO00]J.H. Jahnke and AValenstein. Reverse Engineering [NWZ01] J.Niere, J.P. Wadsack, and ZAiindorf. Reco-

Tt%ols as Media for Imperfect Knowledge.Rroc. of the

7" Working Conference on Reverse Engineering
(WCRE), Brisbane, AustralidEEE Computer Society
Press, 2000.

[JZ97]J.H. Jahnke and Alindorf. Rewriting poor Design
Patterns by Good Design Patterns. In Serge Demeyer afidP94]S. Paul and APrakash. A framework for source code

[KNNZ99a] T. Klein, U. Nickel, J.Niere, and AZundorf.

Harald Gall, editorsProc. of the ESEC/FSE Workshop
on Object-Oriented Re-engineeringechnical Universi-

ty of Vienna, Information Systems Institute, Distributed
Systems Group, September 1997. Technical Repo[
TUV-1841-97-10.

From UML to Java And Back Agaifiechnical Report to
appear, University of Paderborn, Paderborn, Germany,
September 1999.

[KNNZ99b] H.J. Kbhler, UNickel, J.Niere, and AZindorf.

Using UML as a visual programming languageschni-
cal Report tr-ri-99-205, University of Paderborn, Pader
born, Germany, August 1999.

[KNNZO00] H.J. Kbhler, UNickel, J.Niere, and AZundorf.

Integrating UML Diagrams for Production Control Sys-
tems. InProc. of the 22" Int. Conf. on Software Engi-
neering (ICSE), Limerick, IrflandACM Press, 2000.

[KP96] C. Kramer and LPrechelt. Design recovery by auto-

mated search for structural desjgn patterns in object-or
ented software. IRroc. of the éd Working Conference
on Reverse Engineering (WCRE), Monterey, gafges
208-215. IEEE Computer Society Press, November
1996.

[KS98] R.K. Keller and RSchauer. Design Components: To-

[KSRP99]R.K. Keller,
P.Page. Pattern-Based Reverse-Engineering of Design

wards software composition at design levelPhoc. of

the 21" Int. Conf. on Software Engineering, Los Ange-
les, USApages 302—-310. IEEE Computer Society Press,
April 1998.

R.Schauer, SRobitaille, and

Components. IProc. of the 21" Int. Conf. on Software

vering UML Diagrams from Java Code using Patterns. In
Proc. of 2' Workshop on Soft Computing Applied to
Software Engineering, Enschede, The Netherlabels-
ture Notes in Computer Science (LNCS). Springer Ver-
lag, 2001.

search using program patteriEEE Transactions on
Software Engineerind20(6):463-475, June 1994,

tQui94] A. Quilici. Amemory-based approach to recognizing

programming plans.Communications of the ACM
37(5):84-93, May 1994.

[Rad99]A. Radermacher. Support for Design Patterns th-

rough Graph Transformation Tools. Froc. of Int.
Workshop and Symposium on Applications Of Graph
Transformations With Industrial Relevance (AGTIVE),
Kerkrade, The Netherlandd NCS. Springer Verlag,
1999.

TR0z97]G. Rozenberg, editoHandbook of Graph Gramm-

ars and Computing by Graph Transformationvorld
Scientific, Singapore, 1997.

[RS95]J. Rekers and ASchirr. A Graph Grammar Approach

to Graphical Parsing. IAroc. of the IEEE Symposium on
Visual Languages, Darmstadt, GermaiyEE Compu-
ter Society Press, 1995.

[’SSOO]P.SeIonen and TSystd. Scenario-Based Syntesis of

Annotated Class Diagrams in UML. Rroc. of the Con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Minneapolis,
Minnesota USAIEEE Computer Society Press, October
2000.

[UML] Rational Software CorporatioddML documentation

version 1.3 (1999). Online at http://www.rational.com

[Wil94] L.M. Wills. Using Attributed Flow Graph Parsing to

Recognize Programs. Iint. Workshop on Graph
Grammars and Their Application to Computer Science
Williamsburg, Virginia, November 1994,

Engineering, Los Angeles, USpages 226—235. IEEE [Zad78]L.A. Zadeh. Fuzzy sets as a basis for a theory of pos-

Computer Society Press, May 1999.

sibility. Fuzzy Sets and Systerh978.

[Meh84] K. Mehlhorn.Graph Algorithms and NP-Complete- [ZUn96]A. Ziindorf. g]raph Pattern Matching in PROGRES.

ness Springer Verlag, Slt edition, 1984.

[Mey88] B. Meyer. Eiffel: A language and environment for

software engineeringlournal of Systems and Software
1988.

In Proc. of the 5 International Workshop on Graph-
Grammars and their Application to Computer Science
LNCS 1073. Springer Verlag, 1996.

